Python API¶
A despeckling/denoising Toolbox for SAR/InSAR written in OpenCL
-
despeckcl.
boxcar
(ampl_master, ampl_slave, phase, window_width, enabled_log_levels=['error', 'warning', 'fatal'])¶ Filters the input with a boxcar filter
Parameters: - ampl_master (ndarray) – the amplitude of the master image
- ampl_slave (ndarray) – the amplitude of the slave image
- phase (ndarray) – the interferometric phase of the master and slave images
- window_width (int) – the window width of the boxcar window, has to be an odd number
Returns: a tuple containing the reflectivity, phase and coherence estimates
Return type: tuple of ndarrays
-
despeckcl.
goldstein
(ampl_master, ampl_slave, phase, patch_size, overlap, alpha, enabled_log_levels=['error', 'warning', 'fatal'])¶ Filters the input with the Goldstein filter
Parameters: - ampl_master (ndarray) – the amplitude of the master image
- ampl_slave (ndarray) – the amplitude of the slave image
- phase (ndarray) – the interferometric phase of the master and slave images
- patch_size (int) – width of the patch for each 2D FFT
- overlap (int) – overlap of the patches
- alpha (float) – strength of filtering
- enabled_log_levels ([string]) – enabled log levels, log levels are: error, fatal, warning, debug, info
Returns: a tuple containing the reflectivity, phase and coherence estimates
Return type: tuple of ndarrays
-
despeckcl.
nlinsar
(ampl_master, ampl_slave, phase, search_window_size, patch_size, niter, lmin, enabled_log_levels=['error', 'warning', 'fatal'])¶ Filters the input with the NLInSAR filter
Parameters: - ampl_master (ndarray) – the amplitude of the master image
- ampl_slave (ndarray) – the amplitude of the slave image
- phase (ndarray) – the interferometric phase of the master and slave images
- search_window_size (int) – width of the search window, has to be an odd number
- patch_size (int) – width of the patch, has to be an odd number
- niter (int) – number of iterations
- lmin (int) – minimum number of looks for the smoothing step
- enabled_log_levels ([string]) – enabled log levels, log levels are: error, fatal, warning, debug, info
Returns: a tuple containing the reflectivity, phase and coherence estimates
Return type: tuple of ndarrays
-
despeckcl.
nlsar
(covmat_raw, search_window_size, patch_sizes, scale_sizes, nlsar_stats, h=15.0, c=49.0, enabled_log_levels=['error', 'warning', 'fatal'])¶ filters the input with the nlsar filter
Parameters: - covmat_raw (ndarray) – unfiltered covariance/scattering matrix
- search_window_size (int) – width of the search window, has to be an odd number
- patch_sizes ([int]) – widths of the patches, have to be odd numbers
- scale_sizes ([int]) – widths of the scales, have to be odd numbers
- std::map nlsar_stats (wrapped) – statistics of a homogenous training area produced by nlsar_train
- h (float) – nonlocal smoothing parameter
- c (float) – degrees of freedom of Chi-squared distribution
- enabled_log_levels ([string]) – enabled log levels, log levels are: error, fatal, warning, debug, info
Returns: a tuple containing the reflectivity, phase and coherence estimates
Return type: tuple of ndarrays
-
despeckcl.
nlsar_insar
(ampl_master, ampl_slave, phase, search_window_size, patch_sizes, scale_sizes, nlsar_stats, h=15.0, c=49.0, enabled_log_levels=['error', 'warning', 'fatal'])¶ filters the input with the nlsar filter
Parameters: - ampl_master (ndarray) – the amplitude of the master image
- ampl_slave (ndarray) – the amplitude of the slave image
- phase (ndarray) – the interferometric phase of the master and slave images
- search_window_size (int) – width of the search window, has to be an odd number
- patch_sizes ([int]) – widths of the patches, have to be odd numbers
- scale_sizes ([int]) – widths of the scales, have to be odd numbers
- std::map nlsar_stats (wrapped) – statistics of a homogenous training area produced by nlsar_train
- h (float) – nonlocal smoothing parameter
- c (float) – degrees of freedom of Chi-squared distribution
- enabled_log_levels ([string]) – enabled log levels, log levels are: error, fatal, warning, debug, info
Returns: a tuple containing the reflectivity, phase and coherence estimates
Return type: tuple of ndarrays